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Abstract. We consider a nonlinear field equation which can be derived from a binomial lattice
as a continuous limit. This equation, containing a perturbative friction-like term and a free
parameterγ , reproduces the Toda case (in the absence of the friction-like term) and other
equations of physical interest, by choosing particular values ofγ . We apply the symmetry and
the approximate-symmetry approach, and the prolongation technique. Our main aim is to check
the limits of validity of different analytical methods in the study of nonlinear field equations.
We show that the equation under investigation with the friction-like term is characterized by a
finite-dimensional Lie algebra admitting a realization in terms of boson annhilation and creation
operators. In the absence of the friction-like term, the equation is linearized and connected with
Bessel-type equations. Examples of exact solutions are displayed, and the algebraic structure of
the equation is discussed.

0. Introduction

In this paper we study the class of nonlinear wave equations

utt + εut =
[(

1+ u

γ

)γ−1
]
xx

(1)

whereu = u(x, t), subscripts denote partial derivatives,ε is a free parameter, andγ is a
constant which takes all (real) values except zero and one.

For ε = 0, equation (1) can be considered as the continuous limit of a uniform
one-dimensional nonlinear lattice ofN particles interacting through the nearest-neighbour
potential [1]

φ(rn) = an

bn

[(
1+ bnrn

γ

)γ
− (1+ bnrn)

]
(2)

wherean andbn are constants of thenth nonlinear spring.
The equation of motion of the chain reads

Mnÿn = −[φ′(rn+1)− φ′(rn)] (3)

whereφ′ = dφ
dr , Mn is the mass of then-particle andrn = yn− yn+1, yn is the displacement

of the n-particle from its equilibrium position. We shall call the chain governed by the
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potential (2) a ‘binomial lattice’. If the binomial lattice is uniform, i.e.an = a, bn = b and
Mn = M for any n, the equation of motion (3) takes the form

r̈n = a

M

[(
1+ b

γ
rn+2

)γ−1

− 2

(
1+ b

γ
rn+1

)γ−1

+
(

1+ b

γ
rn

)γ−1
]
. (4)

For γ → ∞, γ = 2, γ = 3 and γ = −1, equation (4) reproduces the Toda [2],
the harmonic, the Fermi–Pasta–Ulam [3] and a Coulomb-like uniform lattice, respectively.
Since equation (4) models interesting physical situations, its analysis may be important
mostly from the point of view of a unifying theory of lattice systems described by the
potential (2).

This difficult task is made simpler by starting from the investigation of the continuous
limit of equation (4). Then, equation (4) becomes

utt =
[(

1+ u

γ

)γ−1
]
xx

(5)

after rescalingbr → u and
√
ab
M
t → t .

For γ → ∞, equation (5) coincides with the(1 + 1)-dimensional continuous Toda
equation [4]

utt = (eu)xx (6)

which is known also asheavenly equationand plays a crucial role in general relativity
[5, 6].

Note that equation (5) is an example of hydrodynamical type [7]. This can be seen by
puttingP = (1+ u

γ
)γ−1. Then, equation (5) may be written as

Pt = γ − 1

γ
P

γ−2
γ−1Sx (7)

St = Px. (8)

(Equation (5) arises by eliminatingS.)
Equation (1) represents a modified version of equation (5). It contains a friction-like

term which can be considered as a small perturbation. This extension of equation (5) allows
us to check the validity of different analytical methods usually employed to handle integrable
equations.

Precisely, here we apply to equation (1) the symmetry [8] and the approximate-symmetry
approach [9], and the prolongation procedure [10].

The main results achieved in this paper are the following. In section 2 we find the
approximate symmetry generators of equation (1) in the case in whichε is a perturbative
parameter. The commutation relations among these operators do not define anexact finite-
dimensional algebra. (Exact algebras arise only forε = 0 and whenε 6= 0 is not considered
as a small quantity.) Notwithstanding, an exact finite-dimensional Lie algebra can be
constructed by introducing certain auxiliary operators. A realization of this algebra, which
characterizes the approximate symmetries of equation (1), is obtained in terms of boson
annihilation and creation operators.

In section 3, the symmetry approach is exploited to determine special solutions of
equation (1) and equation (5). In this context, the study of the symmetry corresponding
to the generatorX0

4 (see (13)) is of particular interest. In fact,X0
4 is a scale symmetry

in the variablesx, u together with a translation of2γ
γ−2 along u. For γ → ∞, i.e. when

equation (1) coincides with the continuous Toda equation, the scale symmetry is broken.
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The reduced equation related toX0
4 resembles the one-dimensional Liouville equation (see

(38)) containing a square derivative which vanishes in the limitγ → ∞. In the case
ε = 0, equation (38) is exactly solved for some values of the parameterγ . For example, if
γ = 3 (a choice associated with the Fermi–Pasta–Ulam potential) we obtain a solution to
equation (5) via equation (38) expressed in terms of the Weierstrass function.

Forε 6= 0, we provide an implicit solution to equation (1) by using the symmetry variable
V = v∂x + ∂t , wherev is a constant. This solution (see (76)) involves a generalization of
the exponential-integral function. It is notable that forγ → ∞, this solution reproduces
just that corresponding to the continuous Toda case [11].

Section 4 is devoted to a study of equation (1) within the prolongation scheme [10]. This
method is particularly convenient because it allows us to analyse equation (1) forε = 0 and
ε 6= 0 by an algebraic point of view. We show that the (differential) prolongation equations
for equation (5) provide a class of solutions connected with the Lie algebra of the Euclidean
groupE2 in the plane. This algebra leads to a linearized version of equation (5), in the
sense that a mapping is established between equation (5) and the linear wave equation (85)
written in a pseudopotential variable. Forγ → ∞, equation (85) coincides with a two-
dimensional form of a linear wave equation that occurs in a generalized Gibbson–Hawking
ansatz [12]. On the other hand, the prolongation equations for equation (1) can be solved
in terms of power-series expansions whose coefficients (in the variablez = (1+ u

γ
)γ−1 )

depend on the pseudopotential components and, for a certain infinite set of values ofγ , obey
a finite-dimensional Lie algebra. A representation of this algebra indicates the existence of
a possible link between the prolongation method and the symmetry approach. Finally, in
section 5, some comments are reported.

1. The approximate-symmetry approach

In the case in whichε is a perturbative parameter, equation (1) can be handled profitably
by means of the method devised by Baikovet al [9] some years ago. This method enables
one to construct approximate symmetries which are stable for small perturbations of the
differential equation under investigation.

In order to obtain the approximate symmetries of equation (1) (ε 6= 0), we have to
introduce the quantities

F0 = utt − [(1+ u/γ )γ−1]xx
F1 = ut

(9)

into the equations (3.16) and (3.17) of [9].
For brevity, we shall omit any calculation and report below the results only.
The approximate-symmetry generator turns out to be

X =
[
c1t + c2+ ε

(
γ − 2

γ + 2
c1
t2

2
+ k1t + k2

)]
∂t

+[(c1+ c2)x + c4+ ε((k1+ k3)x + k4)]∂x

+
[

2γ

γ − 2
c3

(
1+ u

γ

)
+ 2ε

γ

γ − 2

(
k3− γ − 2

γ + 2
c1t

)(
1+ u

γ

)]
∂u (10)

with c1, c2, . . . andk1, k2, . . . arbitrary constants.
From (10) we obtain

X1 = X1
0+ ε

[
γ − 2

γ + 2

t2

2
∂t − 2γ t

γ + 2

(
1+ u

γ

)
∂u

]
(11)
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where

X0
1 = t∂t + x∂x (12)

X2 ≡ X0
2 = ∂t

X3 ≡ X0
3 = ∂x

X4 ≡ X0
4 = x∂x +

2γ

γ − 2

(
1+ u

γ

)
∂u

X5 = ε(t∂t + x∂x)
X6 = ε∂t
X7 = ε

[
x∂x + 2γ

γ − 2

(
1+ u

γ

)
∂u

]
X8 = ε∂x.

(13)

The operatorsX0
1, X0

2, X0
3, X0

4 are the (exact) symmetry generators of equation (1) for
ε = 0, whileX1, X2, X3, X4 are theapproximatesymmetry generators of equation (1) for
ε 6= 0. Theexact symmetry generators of equation (1) forε 6= 0 areX0

1, X0
2 andX0

3. The
operatorsX0

5, X
0
6, X

0
7, X

0
8 are inessential.

The approximate symmetry generatorsX1, X2, X3, X4 satisfy the commutation relations

[X2, X1] = X2+ ε
[
γ − 2

γ + 2
t∂t − 2γ

γ + 2

(
1+ u

γ

)
∂u

]
(14)

[X2, X4] = 0 [X2, X3] = 0 [X1, X4] = 0 (15)

[X1, X3] = −X3 [X3, X4] = X3. (16)

The commutation rules (14)–(16) define an exact finite-dimensional Lie algebra only
for ε = 0. However, they can be exploited to build up a realization of an exact Lie algebra,
which holds forε 6= 0, with the help of the ‘auxiliary’ operators

Z = γ − 2

γ + 2
t∂t − 2γ

γ + 2

(
1+ u

γ

)
∂u (17a)

Y = γ − 2

γ + 2

t2

2
∂t − 2γ t

γ + 2

(
1+ u

γ

)
∂u. (17b)

In doing so, we find

[X2, X1] = X2+ εZ (18a)

[X2, X4] = [X2, X3] = [X1, X4] = 0 (18b)

[X1, X3] = −X3 [X3, X4] = X3 (18c)

[X1, Z] = −ε γ − 2

γ + 2
Y [X1, Y ] = Y (18d)

[X2, Y ] = Z [X2, Z] = γ − 2

γ + 2
X2 [Z, Y ] = γ − 2

γ + 2
Y (18e)

[X3, Y ] = [X3, Z] = [X4, Y ] = [X4, Z] = 0. (18f)

Hereafter, the symbolsY , Z, Xj (j = 1, . . . ,4) will mean both the abstract elements
and the corresponding realizations (see (13), (17) and (18)) of the finite-dimensional Lie
algebra (18).

At this stage, we remark that the subalgebra (18e) is isomorphic to thesl(2, R) algebra

[Z′, T ] = 2S [T , S] = 2Z′ [S,Z′] = −2T (19)
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where

T =
√

2
γ + 2

γ − 2
(Y +X2) S =

√
2
γ + 2

γ − 2
(Y −X2)

Z′ = 2
γ + 2

γ − 2
Z.

(20)

It is straightforward to prove the following proposition.

Proposition 1.The Casimir operator

C = T 2− S2− Z′2

≡ 4
γ + 2

γ − 2

[
2X2Y − Z

(
γ + 2

γ − 2
Z + 1

)]
(21)

of the Lie algebra (19), commutes with all the elementsY,Z,Xj (j = 1, . . . ,4) of the Lie
algebra (18).

Furthermore, the following proposition holds.

Proposition 2.The Lie algebra (18) admits a realization in terms of boson annihilation and
creation operators.

This can be seen by setting

a+1 = t a+2 = u a+3 = x a1 = ∂t a2 = ∂u a3 = ∂x (22)

to give

[aj , a
+
k ] = δjk [aj , ak] = 0 [a+j , a

+
k ] = 0 (j, k = 1, 2, 3) (23)

Y = γ − 2

2(γ + 2)
a+1

2
a1− 2γ a+1

γ + 2

(
1+ 1

γ
a+2

)
a2

Z = γ − 2

γ + 2
a+1 a1− 2γ

γ + 2

(
1+ 1

γ
a+2

)
a2

X1 = a+1 a1+ a+3 a3+ εY X2 = a1 X3 = a2

X4 = a+3 a3+ 2γ

γ − 2

(
1+ 1

γ
a+2

)
a2

(24)

and

C =
(

γ

γ − 2

)2

C∞ + C(γ ) (25)

whereC∞ = −8a2(2a2 + 1) is the Casimir invariant relative to the continuous Toda case
γ →∞, and the operatorC(γ ), defined by

C(γ ) = −8a+2 a2

γ − 2

[
1+ 2γ

γ − 2

(
2a2+ 1

γ
a+2 a2

)]
(26)

tends to zero asγ →∞.
Although the full role of the closed algebra (18) has to be better understood, it is

noteworthy that the auxiliary operatorsZ andY (see (17)) can be interpreted as symmetry
variables of the equations

uxx + εux − 2

γ

(
1+ u

γ

)−2

u2
x = −

(
1+ u

γ

)2
[(

1+ u

γ

)1−γ]
t t

(27)

uxx + εux − 3

2γ

(
1+ u

γ

)−1

u2
x = −2

(
1+ u

γ

)3
2

[(
1+ u

γ

)1−γ
2

]
t t

(28)
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respectively.
Equations (27) and (28) arise formally from equation (1) via the transformations

x → t u→− u

1+ u
γ

(29)

and

x → t u→ γ

[(
1+ u

γ

)−1/2

− 1

]
. (30)

FromZ we obtain the invariantsx ′ = x, η′(x ′) = η(x), with

η(x) =
(

1+ u

γ

)γ−2
2

t (31)

which gives the reduced equation

η2
x +

2− γ
γ

ηηxx + 2− γ
γ

εηηx = γ − 1

γ
(32)

from substitution into (27). Note that equation (32) coincides, formally, with equation (37)
for x → t (see section 3). Therefore, puttingη = eW , equation (32) becomes equation (38)
wheret is replaced byx.

On the other hand, the operatorY yields the invariantsx ′ = x, r ′(x ′) = r(x), with

r(x) =
(

1+ u

γ

)γ−2
2

t (33)

which leads to the ordinary differential equation of the modified Liouville type (see (38))

vxx + εvx + 1

γ − 2
v2
x =

2

γ − 2

[
1

γ
− 2(1+ γ )

]
e−2v (34)

wherev = ln r.
We point out that in the continuous Toda case, i.e. forγ →∞, in the reduced equations

of the one-dimensional modified Liouville type ((38), written in terms of the variablex and
(34)) the termsW 2

t , W 2
x and v2

x disappear. This is due to the fact that forγ → ∞, the
coefficient in front ofu∂u in X0

4 is vanishing, so thatX0
4 is no longer a scale symmetry in

the variablesx, u (together with a translation of2γ
γ−2 alongu). Thus, the presence of square

first derivatives in the reduced equations generated byX0
4 reflects the existence of a scale

symmetry, which is broken in the limitγ →∞.

2. Explicit solutions

Here we shall display some significant examples of exact solutions to equation (1) by using
the symmetry approach. To this aim, first let us deal with the generatorX0

4 which appears
in both the casesε = 0 andε 6= 0. The group transformations involved byX0

4 are

x ′ = eλx (35a)

t ′ = t (35b)

u′ = γ
[(

1+ u

γ

)
e

2λ
γ−2 − 1

]
(35c)
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whereλ is the group parameter. A set of basis invariants corresponding to (35) is given by

I1 =
(

1+ u
′

γ

)2−γ
2

x ′ =
(

1+ u

γ

)2−γ
2

x (36a)

I2 = t ′ = t. (36b)

Now, by puttingρ(t) = I1, from equation (1) we obtain the reduced equation

ρ2
t +

2− γ
γ

ρρtt + 2− γ
γ

ερρt = γ − 1

γ
. (37)

Through the change of variableρ = eW , equation (37) becomes

Wtt + εWt + 2

2− γ W
2
t =

γ − 1

2− γ e−2W (38)

which is a kind of modified one-dimensional Liouville equation. Forε = 0, equation (38)
can be solved exactly. This occurs via the position

W = 2− γ
2

ln θ (39)

which transforms equation (38) into

θtt = 2(γ − 1)

(2− γ )2 θ
γ−1. (40)

From (40) one easily finds

θ2
t =

4(γ − 1)

(2− γ )2γ θ
γ + c (41)

wherec is a constant of integration.
Putting

y2 = 1+ aθγ (42)

with

a = 4(γ − 1)

cγ (γ − 2)2
(43)

equation (41) provides∫
dy(y2− 1)

1−γ
γ = γ

2
a

1
γ

√
ct + constant (44)

with c > 0.
In some situations (see case (iv)) it may be convenient to write formula (44) as∫

(coshz)−
2
γ dz = (−1)

γ

1−γ
γ

2
a

1
γ

√
ct + constant (45)

which follows from (44) via the change of variabley = tanhz.
Once the integral at the left-hand side of (44) has been calculated, one obtains theexact

solution

u = γ
[
x

2
γ−2

(
y2− 1

a

)1
γ

− 1

]
(46)

to equation (1) (ε = 0) (see (36a), (39), and (42)).
At this point, by way of example, we would like to deal with some particular value of

the parameterγ which is compatible with anexplicit expression ofy in terms oft .
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In what follows we shall deal with the cases (i)γ = 1
2, (ii) γ = 3, and (iii) γ = −2.

The last two choices correspond, respectively, to the Fermi–Pasta–Ulam potential
[3], and to a potential whose nonlinear part, 1/(1 − u

2)
2, mimics the inverse square

potential appearing in the treatment of the scattering states in conformally invariant quantum
mechanics [13].

Case 1.For γ = 1
2, from (44) we have∫
(y2− 1) dy = 1

4a
2√ct (47)

with a = − 16
9c , where the constant at the right-hand side of (44) has been put equal to zero.

Equation (47) yields the cubic equation

y3− 3y − 3
4a

2√ct = 0 (48)

which provides the real solution [14, p 17]

y = s1+ s2 (49)

where

s1 =
(

3
8a

2√ct +
√

9
64a

4ct2− 1

)1
3

(50a)

s2 =
(

3
8a

2√ct −
√

9
64a

4ct2− 1

)1
3

(50b)

for t > 8
3a2
√
c
.

The remaining solutions of (48) are complex conjugate functions, and are given by

y1 = −1

2
(s1+ s2)+ i

√
3

2
(s1− s2) y2 = y∗1 . (51)

Now, by inserting (51) in (48) forγ = 1
2 we find the exact solution

u = 1

2

[
1

a2
x−

4
3 (s2

1 + s2
2 + 1)− 1

]
. (52)

Case 2.For γ = 3, equation (41) provides

θ2
t = 8

3θ
3+ c (53)

which can be written as

θ2
τ = 4θ3− g3 (54)

via the rescalingτ =
√

2
3t , with g3 = −c/2. Equation (54) is a special version of the

equation

θ2
τ = 4θ3− g2θ − g3 (55)

which is satisfied by the Weierstrass elliptic functionP(τ ; g2, g3), whereg2 andg3 are the
invariants ofP (see [14, p 918]).

Concerning equation (54) we shall distinguish two cases,g3 = 0 and g3 6= 0. For
g3 = 0, we have

θ(τ ) = P(τ ; 0, 0) = 1

τ 2
(56)

which coincides with the first term of the series representation ofP(τ ; g2, g3).
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Then, keeping in mind (42) and (48), we find

u = 3

(
3

2

x2

t2
− 1

)
. (57)

For g3 6= 0, equation (54) gives∫ θ

∞

dα√
4α3− g3

= τ (58)

that is to say

θ = P(τ ; 0, g3). (59)

Hence, from (46) we deduce

u = 3(x2θ − 1) = 3[x2P(τ ; 0, g3)− 1]. (60)

For c = −2 (g3 = 1), the Weierstrass function in (60) reduces to the equianharmonic case
P(τ ; 0, 1) [14, p 652].

Finally, note that another case which can be solved in terms of Weierstrass function
corresponds to the choiceγ = 4.

Case 3.If γ = −2, from (44) we easily obtain

u = −2

(√
ct2− a
x
− 1

)
(61)

with a = 3
8c .

Case 4.For γ = −1, the potential (2) takes the formφ ∼ (1− u)−1 − (1+ u), which
resembles a special case of the generalized Killingbeck potentialV = −A

r
+Br+Cr2 [15].

We remind the reader that a Coulomb potential perturbed by a linear term describes the
spherical Stark effect in hydrogen [16]. Putting in (45)γ = −1 andc = −|c|, we arrive
at the relation

2z+ sinh 2z = 9
4|c|

3
2 t + constant. (62)

Curiously enough, by replacing formally the hyperbolic sine by the exponential,
equation (62) becomes an equation of the Schröeder type, which appears in the bootstrap
model and in renormalization theory, whose analytical structure was investigated by
Hagedorn and Rafelsky [17]. These authors obtained a solution of the Schröeder equation
both as a power series expansion and as an integral representation. Thus, it should be of
interest to try to adopt the same strategy in the study of equation (62).

Another nontrivial example of exact solution to equation (1) can be determined starting
from the linear combination ofX3 ≡ X0

3 = ∂x andX2 ≡ X0
2 = ∂t :

V = v∂x + ∂t (63)

wherev is a (real) constant. The group transformations arex ′ = x + vλ, t ′ = t + λ,
which provide the invariantξ = x ′ − vt ′ = x − vt . Thus, by inserting the variableξ into
equation (1), we obtain the ordinary differential equation

v2uξξ + εvuξ =
[(

1+ u

γ

)γ−1
]
ξξ

(64)
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which gives

v2uξ − εvu =
[(

1+ u

γ

)γ−1
]
ξ

+ c0 (65)

wherec0 is a constant of integration. By choosingc0 = 0, v2 = γ−1
γ

and limiting ourselves
to consider those values ofγ such thatγ = −|γ |, equation (65) yields[

1−
(

1− u

|γ |
)−|γ |−2

]
ξ

= ε

v
u (66)

from which ∫ u

0

1

u′

[
1−

(
1+ u′

|γ |
)−|γ |−2

]
du′ = ε

v
(ξ − ξ0) (67)

ξ0 being a constant of integration.
Note that for|γ | → ∞, equation (67) becomes∫ u

0

1− e−u
′

u′
du′ ≡ Ein(u) = ε

v
(ξ − ξ0) (68)

whereEin(u) denotes the exponential-integral function [18, p 255]

Ein(u) = −Ei(−u)+ ln u+ C (69)

Ei(−u) = − ∫∞
u

e−u′

u′ du′, andC is the Euler–Mascheroni constant, defined by [18]

C = −ψ(1) = −
∫ ∞

0
e−t ln t dt (70)

whereψ(z) = 0′(z)
0(z)

is the psi (or digamma) function [14, p 258].
At this point, let us introduce the function

0̂(α, u; |γ |) =
∫ ∞
u

(
1+ u′

|γ |
)−(2+|γ |)

(u′)α−1 du′

= 0̂(α, 0; |γ |)−
∫ u

0

(
1+ u′

|γ |
)−(2+|γ |)

(u′)α−1 du′ (71)

which holds for 0< α < 2+ |γ |.
We point out that for|γ | → ∞, 0̂(α, u; |γ |) reproduces the incomplete gamma function

0(α, x) [14, p 260].
Now, since the integral at the right-hand side of (71) can be written as [18]∫ u

0
(u′)α−1

(
1+ u′

|γ |
)−(2+|γ |)

du′ = uα

α
2F1

(
2+ |γ |, α;α + 1,− u

|γ |
)

= uα

0(2+ |γ |)
∞∑
n=0

0(2+ |γ | + n)
(α + n)n!

(−1)n
(
u′

|γ |
)n
. (72)

Equation (71) takes the form

0̂(α, u; |γ |) = 0̂(α, 0, |γ |)− u
α

α
− uα

0(2+ |γ |)
∞∑
n=1

0(2+ |γ | + n)
(α + n)n!

(−1)n
(
u

|γ |
)n

(73)

where0(·) is the gamma-function and2F1 is the Gauss hypergeometric series, respectively
[14, p 556].
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We have (see [18, p 209])

lim
α→0

0̂(α, u; |γ |) = lim
α→0

[
α0̂(α, 0; |γ |)− uα

α

− uα

0(2+ |γ |)
∞∑
n=1

0(2+ |γ | + n)
(α + n)n!

(−1)n
(
u

|γ |
)n ]

= − ln u+ ln |γ | − ψ(2+ |γ |)− C −
∫ u

0

1

u′

[(
1+ u′

|γ |
)−(2+|γ |)

− 1

]
du′.

(74)

On the other hand, from (71) we obtain (see [14, p 255])

lim
α→0

0̂(α, u; |γ |) =
∫ ∞
u

(
1+ u′

|γ |
)−(2+|γ |) 1

u′
du′. (75)

Finally, by comparing (75) with (74), we find∫ ∞
u

(
1+ u′

|γ |
)−(2+|γ |) 1

u′
du′ = ln

|γ |
u
− ψ(2+ |γ |)− C

+
∫ u

0

1

u′

[
1−

(
1+ u′

|γ |
)−(2+|γ |)]

du′ (76)

that is (see (67))

0̂(0, u; |γ |) =
∫ ∞
u

(
1+ u′

|γ |
)−(2+|γ |) 1

u′
du′

= ε

v
(ξ − ξ0)+ ln

|γ |
u
− ψ(2+ |γ |)− C. (77)

We remark that lim|γ |→∞[ln |γ | − ψ(2+ |γ |)] = 0 [19, p 945].
Therefore, equation (77) becomes

lim
|γ |→∞

0̂(0, u; |γ |) = −Ei(−u) = ε

v
(ξ − ξ0)− ln u− C (78)

from which (see (69))

Ein(u) = ε

v
(ξ − ξ0). (79)

This result, corresponding to the continuous Toda case, has been already obtained in [11].
Consequently, the function̂0(α, u; |γ |) defined by (71) can be considered as an extended
version of the incomplete gamma function0(α, u) = ∫∞

u
e−t tα−1 dt (see [14, p 260]).

The quantity (77), wherê0(0, u; |γ |) can be interpreted as a generalization of the
exponential-integral function, constitutes an implicit solution of equation (1).

3. Linearization and algebraic properties

Equation (1) can be handled within the prolongation scheme [10]. In doing so, let us
consider the prolongation equations for equation (1):

yix = F i(u, ut ; y) yit = Gi(u, uxj ; y) (80)

wherei = 1, 2, . . . N (N arbitrary) and the set of variablesy ≡ {yi} is the pseudopotential
[10] (j = 1, 2, . . .M (M arbitrary)).
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The compatibility condition for equations (80) gives

F i = γ

γ − 1
Li(y)ut +Mi(u, y) (81a)

Gi = Li(y)
(

1+ u

γ

)γ−2

ux + P i(u; y) (81b)

whereMi = Mi(u; y), P i = P i(u; y) andLi = Li(y) are defined by

γ − 1

γ
Mi
u + [P,L]i = εLi (82a)(

1+ u

γ

)γ−2

[L,M]i = P iu (82b)

[M,P ]i = 0 (82c)

with [P,L]i = P k ∂Li
∂yk
− Lk ∂P i

∂yk
, and so on.

In order to explore the prolongation equations (82), for brevity we shall omit the indexi.
The following proposition is noteworthy.

Proposition 3.Let u be a solution of equation (5). Then, the functiony2 = y2(x, t) defined
by

y2x = W(u) sinhy1 y2t = S(u) coshy1 (83)

y1x = γ

γ − 1
ut y1t =

(
1+ u

γ

)γ−2

ux (84)

satisfies the wave equation

y2t t = γ − 1

γ

(
1+ u

γ

)γ−2

y2xx (85)

whereW(u) andS(u) obey the linear differential equations of the Bessel type

Wuu = γ

γ − 1

(
1+ u

γ

)γ−2

W (86)

and

Suu = γ

γ − 1

(
1+ u

γ

)γ−2

S + γ − 2

γ

(
1+ u

γ

)−1

Su. (87)

To prove this proposition, let us look for a solution to equations (82) of the form

M = W(u)V (y) P = S(u)T (y). (88)

Then equations (82) provide

S = γ − 1

γ
Wu Su =

(
1+ u

γ

)γ−2

W (89)

and

[X1, X2] = X3 [X1, X3] = X2 [X2, X3] = 0. (90)

with L ≡ X1, V ≡ X2, T ≡ X3.
Equations (89) imply equations (86) and (87). By means of the change of variable

z = 2i
√

γ

γ − 1

(
1+ u

γ

)γ

2

. (91)
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Equation (86) is transformed into the Bessel equation

z2Zzz + zZz +
(
z2− 1

γ 2

)
Z = 0 (92)

whereZ = Z(z) is related toW by

W =
(

1+ u

γ

)1
2

Z

[
2i
√

γ

γ − 1

(
1+ u

γ

)γ

2

]
. (93)

On the other hand, equation (87) takes the form

z2Zzz + zZz +
[
z2−

(
γ − 1

γ

)2
]
Z = 0 (94)

where

S =
(

1+ u

γ

)γ−1
2

Z

[
2i
√

γ

γ − 1

(
1+ u

γ

)γ

2

]
. (95)

Z stands for a generic Bessel function of index± 1
γ

and± γ−1
γ

, respectively [14, p 358].
We observe that in the study of the heavenly equation, Bessel functions appear in

different contexts. For example, in [20] Bessel functions of first and zero order turn out
to be related to special solutions of Einstein field equations. Conversely, in [11] Bessel
functions of the same order are involved in the pseudopotential formulation of the heavenly
equation.

The commutation rules (90) define the Lie algebra corresponding to the Euclidean
groupE2 in the plane. A realization of (90) in terms of a two-component pseudopotential
y ≡ (y1, y2) is

X1 = ∂y1 X2 = sinhy1∂y2 X3 = coshy1∂y2. (96)

Therefore, with the help of (81a) and (81b), equations (80) take the form expressed by
(83) and (84). Furthermore, by differentiatingy2x with respect tox andy2t with respect to
t (see (83)) and using (84) and (89), one arrives at the wave equation (85).

Finally, we observe that forγ = 3, i.e. in the case of the Fermi–Pasta–Ulam potential,
equation (86) leads to the Airy equation [14, p 446]

Wσσ = σW (97)

via the transformationσ = 2−
1
3 (u+ 3).

At this stage, we remark that equation (85), which is linear in the pseudopotential
variabley2, represents a correspondence between any solutionu of the original equation (5)
and y2. This feature allows us, in theory, to solve nontrivial linear wave equations using
proposition 3. To provide an explicit example, let us consider the solution (57) related to
the caseγ = 3. Then, equation (85) becomes

y2t t = x2

t2
y2xx. (98)

Inserting (57) into equations (84) and (85), we find

y2x = W(u) sinh

(
c − g

2

x3

t3

)
(99)

y2t = 2

3
Wu(u) cosh

(
c − g

2

x3

t3

)
(100)
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whereu = 21/3σ − 3, σ = 9× 2−
4
3
x2

t2
, c is a constant of integration, andW(σ) is the Airy

function (see equation (97)).
The prolongation equations (82) offer the possibility of getting a further insight into the

algebraic structure of equation (1).
To this aim, let us write equations (82) in the form

γ − 1

γ
Pz + [M,L] = 0

γ − 1

γ
z
γ−2
γ−1Mz = εL+ [L,P ]

[M,P ] = 0
(101)

wherez = (1+ u
γ
)γ−1. Then, we look for a solution to equations (101) such that

M =
∞∑
k=0

ak(y)z
k P =

∞∑
k=0

bk(y)z
k. (102)

In the following, we limit ourselves to characterize mainly the algebraic structure of
equation (1) for a particular sequel of values of the parameterγ (see proposition 4). In this
case it turns out that a finite-dimensional Lie algebra is associated with equation (1). This
algebra is used to write equation (1) in a potential form, which allows us to estabilish some
analogies between the prolongation and the symmetry approaches. In general, namely for
any value ofγ (provided thatγ 6= 0, 1) a systematic analysis of the algebraic properties of
equation (1), which is based on the ansatz (102), requires further efforts.

Substitution from (102) into equation (101) gives the following constraints between the
coefficientsak(y) andbk(y):

k
γ − 1

γ
bk + [ak−1, L] = 0 (103a)

γ − 1

γ
(a1+ 2a2z+ 3a3z

2+ 4a4z
3+ · · ·)z γ−2

γ−1 = εL+ [L, b0+ b1z+ b2z
2+ b3z

3+ · · ·]
(103b)

and

[a0, b0] = 0

[a0, b1] + [a1, b0] = 0

[a0, b2] + [a1, b1] + [a2, b0] = 0

. . .

N∑
k=1

[ak−1, bN−k] = 0

(104)

with N arbitrary.
The following property holds.

Proposition 4.If ε 6= 0 and ν = γ−2
γ−1 is such thatν 6= . . . ,−3,−2,−1, 0, 1, 2, 3 . . .,

equations (104) imply the finite-dimensional Lie algebraL

[a0, b0] = [a0, b1] = [L, b1] = 0 (105a)

[b0, b1] = εb1 (105b)

[b0, L] = εL (105c)

[a0, L] = 1

ν − 2
b1 (105d)
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for ε 6= 0, and the finite-dimensional Lie algebraL′

[a0, b0] = [a0, b1] = [L, b1] = [b0, b1] = [b0, L] = 0 (106a)

[a0, L] = 1

ν − 2
b1 (106b)

for ε = 0.

The proof is straightforward. In fact, under the assumption thatν 6=
. . . ,−3,−2,−1, . . . , from (103b) we obtainak = 0, [bk, L] = 0 (k = 1, 2, 3, . . .) and the
commutation relation (105c). In addition, equation (104) entails the commutation relation
(105d) and b2 = b3 = · · · = 0. Furthermore, equation (105b) can be determined by
elaborating equation (105c) via the Jacobi identity applied to [a0, [b0, L]]. The commutation
relations (106) emerge immediately.

A matrix representation ofL is

a0 =
( 0 −1 0

0 0 0
0 0 0

)
b0 =

(
ε 0 0
0 ε 0
0 0 0

)

b1 =
( 0 0 1

0 0 0
0 0 0

)
L =

( 0 0 0
0 0 1

2−ν
0 0 0

)
.

(107)

Then, equations (80) take the form(
y1

y2

y3

)
x

=
( 0 0 0
−1 0 0
0 ut 0

)(
y1

y2

y3

)
(108a)

(
y1

y2

y3

)
t

=
(

ε 0 0
0 ε 0

(1+ u
γ
)γ−1 γ−1

γ
ux(1+ u

γ
)γ−2 0

)(
y1

y2

y3

)
(108b)

from which y1 = λ1eεt , y2 = (λ0− λ1x)eεt , and

y3ζ = −
1

λ1
eεtut ζ (109a)

y3t = −λ1eεt ζ 2 ∂

∂ζ

(1+ u
γ
)γ−1

ζ
(109b)

whereζ = λ0− λ1x, andλ0, λ1 are constants of integration. Herey3 can be interpreted as
a potential variable.

Equations (108a) and (108b) allow us to find, in theory, special explicit solutions to

equation (1). For example, let us assume thatut = β(t)ζ
2

γ−2 . Then, equations (109a) and
(109b) give rise to the differential equation forβ(t)

β = γ b 1
γ−1

d

dt
(β̇ + εβ) 1

γ−1 (110)

whereb = (γ−2)2

2γ (γ−1)λ1
2.

Equation (110) can be written as

V̈ + εV̇ = kV γ−1 (111)

(k = b
− 1
γ−1

γ
) through the position

β̇ + εβ = V γ−1. (112)
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For ε = 0, we may use for the algebraL′ the same representation (107), where now
b0 is the null matrix. In this case equation (111) coincides with equation (40), which leads
to explicit solutions of the original equation (5) for special values of the parameterγ (see

section 3). We remark that via the change of variableV = e
2

2−γ W and by a suitable choice of
the free constantk, equation (111) becomes equation (38), which arises from the symmetry
operatorX0

4 in the context of the Lie group theory. This fact suggests the existence of a
possible link between the prolongation method and the symmetry approach. However, our
result is indicative only, and many aspects of the problem remain to be elucidated.

4. Comments

We have dealt with a nonlinear field equation arising as the continuous limit of a lattice
model containing many cases of physical significance (the harmonic, Toda, Fermi–Pasta–
Ulam, Coulomb-like lattices and others). This equation, which is new, to the best of our
knowledge, can be considered as a paradigm for the application of different analytical
procedures. The addition of a perturbative friction-like term has allowed us to check the
limits of validity of these methods. These are the symmetry and approximate-symmetry
approach, and the prolongation technique. The joint use of these methods leads to the
discovery of some interesting properties of equation (1), which have been expounded in the
introduction.

The spirit of this paper is both of a methodological and speculative character. The results
obtained are a challange to apply the same strategy to investigate a three-dimensional version
of equation (1). This purpose might be important in nonlinear field theories based on the
deformation of the algebra used in the study of dispersionless field equations [21].
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